
Writing Good Software
Development and Coding Standards

by alan partis
thundernet development group, inc.

boynton beach, florida

Revision #4

16-Jun-02

This document specifies suggested rules and guidelines for writing software source code. While the rules
are considered required practices, the guidelines are more like strong suggestions – deviate from the
guidelines only with specific reason and need.

These standards are based loosely on “Java Software Coding Standards Guide” as published by
Netscape Communications, Inc., the GNU Coding Standards, and the personal experiences of the author.
This document constitutes a proposed standard for Thundernet Development Group members.
Comments for changes are welcome and encouraged.

Writing Good Software • Development and Coding Standards Page 2 of 12

Table of Contents

1. Abstract...3
1.1 Goals...3
1.2 Scope ..3

2. General Rules...4
2.1 When In Rome …..4

3. Tools and Environments...5
3.1 Editors ...5

3.1.1 Tabs ...5
3.1.2 Spaces on Ends of Lines ...5
3.1.3 End of File..5

3.2 IDEs ..5
3.2.1 Automatic Java Code Generation..6
3.2.2 Integrated Editors ..6
3.2.3 Integrated Repositories..6
3.2.4 Limitations in Meeting Java 2 Specs ...7

3.3 Debuggers...7
4. General Coding Rules ..8

4.1 Naming Conventions...8
4.1.1 Constants...8
4.1.2 Global Variables ..8
4.1.3 Functions/Methods and their Arguments...8
4.1.4 Local Variables ..9
4.1.5 Structures, Types, and Classes...9
4.1.6 Java Packages ..9

4.2 Comments...10
4.3 Source File Layout ..10
4.4 Unit Testing ...10

5. Syntax Style Guidelines..11
5.1 Grammar ...11

5.1.1 Spacing and Indentation ..11
5.1.2 Variable Declarations...11
5.1.3 Braces..11
5.1.4 if … else ...11
5.1.5 for...11
5.1.6 while...11
5.1.7 do … while ...11
5.1.8 switch ...12
5.1.9 try … catch … finally (Java / C++) ...12

Writing Good Software • Development and Coding Standards Page 3 of 12

1. ABSTRACT

1.1 Goals

The objective of this document is to establish a standard within the Thundernet Development Group
for the successful development of professional software components and projects. Success in this
instance is not limited only to whether a particular module behaves properly, but is also easy for
debugging (in the rare instance that a bug exists) and especially easy to maintain.

The number one cost in any software project over its lifetime is the cost of maintenance. With this in
mind, it is easy to see that the easiest place to attain cost savings is to improve the maintainability of
code.

Thundernet’s goal is to produce software that is highly reliable, maintainable, extensible, and where
possible, elegant. While flashy code may impress others with our knowledge and skills, it is boring
and “simple” code that is easiest to test and debug and therefore wins contracts and brings home the
bacon.

Using the rules and guidelines that follow should result in:

�� code that is easy to read, follow, and understand

�� documentation that is accurate and helpful

�� reusable objects that will reduce costs of future projects

It is also the desire on the part of Thundernet to establish these rules and guidelines so as to shorten
the learning curve of new members, and more efficiently bring people into a project later in the
project lifecycle. People familiar with the standard will have a much easier time learning and
understanding the coding algorithms and therefore be more readily helpful during a project’s “crunch
time.” Also, the quality of source code that is delivered to a client as part of a project’s production
reflects on Thundernet’s abilities and increases our credibility

1.2 Scope

This document covers only the rules and guidelines for the development of software source code. It
is not concerned with object architecture, algorithm development, or usage of object libraries. While
C is the default language for the application of these standards/guidelines, they are generally
applicable to many other languages. Some sections are also provided explicitly for other languages
such as C++ and/or Java so as to note certain variations or situations unique to those languages.

Writing Good Software • Development and Coding Standards Page 4 of 12

2. GENERAL RULES

2.1 When In Rome …

While it is the purpose of this document to establish standards for good coding practices, it is good to
keep in mind that there are always caveats. The most notable guiding principle is the “When in
Rome, do as the Romans do” rule.

Always implement these standards when writing new code, but there are times when these standards
should be ignored. Here are the rules regarding when NOT to impose these standards:

�� Always try to follow the style of existing code in a project. Mixing styles in a single source
file makes it very difficult for future programmers to debug or make enhancements.

�� Do not impose these standards on existing code while debugging. If only minor
modifications are being made to resolve a bug, then to make wholesale style changes raises
the risk of introducing new bugs. Further, the more changes made, the more difficult it is to
use tools (such as diff for example) to compare revisions of a single file from a repository.
This type of situation can dramatically add to the time necessary to make future
modifications.

�� Do not apply these standards to code that is to be maintained by another group, if that group
has established their own rules and guidelines and they differ from these.

Writing Good Software • Development and Coding Standards Page 5 of 12

3. TOOLS AND ENVIRONMENTS
Every project has various requirements regarding the usage of development tools. Some projects may
require the use of a particular tool or code editor, while others have no restrictions whatsoever. In
general, all Thundernet projects, to the extent possible, should rely on the established toolsets commonly
utilized in the open source development community. In all cases, however, the acceptable tools for a
given project should be established at the outset. There are advantages and disadvantages to every tool
and these should be properly evaluated to determine those most appropriate for the given project.

3.1 Editors

Over the years, countless programmer’s editors have been produced and distributed. Some have
earned wide acclaim and loyal followings while others have truly forgetable. Much like other
religious battles, the arguments as to which editors are the best are generally pointless and not worth
pursuing – everyone has their favorite. However, since one of the keys to success in the delivery of a
software project is a programmer’s comfort in the environment, it is best to simply specify the rules
and guidelines for using these tools and let individual programmers make their own decisions.

Programmer’s editors provide the most flexible development environment and are also the most
portable and ubiquitous. Because of this, they are likely to be used somewhere along the line in
almost every development project. As such, it is necessary to establish standards regarding their
usage.

3.1.1 Tabs

In all instances, pressing the <tab> key on the keyboard should insert an appropriate number of
spaces. <Tab> characters should never be emedded in the source code. <Tabs> are treated
differently in different environments and cause unanticipated problems. When a source file is
saved, any existing <tab> characters should be converted to the appropriate number of <space>
characters.

3.1.2 Spaces on Ends of Lines

Whenever possible, trailing blank spaces at the end lines should be truncated. Most good editors
have the ability to filter unwanted “white space” characters after the last non-blank character.

3.1.3 End of File

No special characters should be embedded as the end-of-file marker. Many versions of DOS and
Unix required files to end with a special character (entered with Ctrl-Z in many cases), but this
practice can be problematic for some of today’s tools.

3.2 IDEs

Integrated Development Environments (IDEs) are generally GUI-based coding tools that try to
simplify the programming experience, or provide additional functionality that can make software
development more efficient. At the very least, most IDEs provide an editor, an integrated JVM (for
Java IDE’s), and a run-time and debug facility. Some Java IDEs provide additional functionality for
generating Java Beans and other graphical components and applications.

At one end of the spectrum, IDEs can dramatically decrease the amount of time necessary to deliver
projects. At the other end, they can cause no end of frustration and increase the time necessary to

Writing Good Software • Development and Coding Standards Page 6 of 12

deliver a project. As with anything, careful evaluation should be made of any canidate IDEs before
accepting their use.

In general, IDEs should be avoided excpet for development of GUI applets or applications. For
development of server-side components, system services, Java servlets or other “back end” business
objects, IDEs do not often provide the best solution. Some of the issues are detailed here.

3.2.1 Automatic Java Code Generation

Most recent Java IDEs (Visual Age, Visual Café, etc.) have the ability to automatically generate
Java code based on some bit of input from the programmer. At first glance this seems to be a
welcome assistance since it is unlikely to encounter syntax or logic errors in this code. It can,
however, cause significant problems if there is reason to believe that any programmer
modifications will be necessary to the generated code. It’s a safe bet that the generated code will
not conform to these Java coding standards; some more than others. The greater the deviation,
the greater the amount of time required to make subsequent modifications or customizations.

Code generation features should be used quite sparingly, and only if the programmer has few
other attractive options.

3.2.2 Integrated Editors

In almost all cases, IDEs provide their own code editing environment. Unfortunately, these
editors are rarely as configurable and customizable as most programmer’s editors. As a result,
more often than not, a programmer’s productivity is reduced by having to learn a whole new
editor, and one that is likely to have fewer and less powerful features. It seems that the ideal
situation would be one where a programmer could integrate the editor of their own choosing into
the IDE.

When using an integrated editor, try to adhere to as many of the rules layed out for programmer’s
editors i.e. spaces instead of tabs, etc. Be vigilant to the troubles that the development team may
encounter if some programmers are using stand alone editors while others are using those from an
IDE. In the most extreme cases, the two won’t be able to work with source files previously edited
in the the other environment. In the case of IBM’s Visual Age for Java, the code editing
environment almost completely removes the concept of a source file by only displaying code
from one method at a time. Even though Visual Age allows for the importing and exporting of
source code so it can be modified in a separate environment, the changes that Visual Age imposes
can be rather annoying.

Use of the editing environment provided by an IDE is up to the programmer’s discretion, but
should be approached with caution.

3.2.3 Integrated Repositories

To provide the most potability and flexibility, the source files for most projects are stored in a
directory tree that reflects the modules being built and further maintained in a versioning
repository such as CVS. However, in the case of Visual Age for Java, a source repository is built
into the IDE. This is great if the project team has chosen Visual Age for Java as the development
tool of choice, but if not, then it should not be used. Since it is unlikely that Thundernet will
adopt the IBM repository tool in Visual Age for Java as the standard repository across all
projects, usage of IBM’s repository can only complicate the development, versioning, and backup
processes already in place.

Writing Good Software • Development and Coding Standards Page 7 of 12

Proprietary repositories contained in IDEs should be avoided. However, if an IDE can easily
integrate with the standard repository for Thundernet projects, then this should be considered a
good thing.

3.2.4 Limitations in Meeting Java 2 Specs

When considering the viability of using a Java IDE, any limitations caused by the IDE should be
investigated thoroughly. For example, IBM’s Visual Age for Java, v2.0 does not support inner
classes. This is a conflict with the latest GUI programming techniques as specified by Sun for
Java 2. This also prevents the methods for unit testing specified elsewhere in this document.

Visual Age for Java v2.0 should not be used. Other IDE’s with similar limitations should also not
be used.

3.3 Debuggers

The most essential tools in any programmer’s toolbox are the debuggers. Most good debuggers
support source level debugging which can save hours or days in the process of seeking out bugs and
their solutions. For the Java platform, debugging hooks are provided directly in the JVM and
exposed for debugger manufacturers through the JPDA (Java Platform Debugger Architecture).
Debuggers are often part of an IDE and can be difficult to find as independent products.

Choosing a debugger is largely a matter of programmer comfort and familiarity as most high-level
debuggers operate similarly. For that reason, there is little to stipulate about which debugger to use or
how to use them. Suffice it to say that good software engineers should be familiar with a few
different ones and use them as necessary to avoid lengthy ‘debugging by printf()’ sessions.

Writing Good Software • Development and Coding Standards Page 8 of 12

4. GENERAL CODING RULES

4.1 Naming Conventions

One large source of frustration for programmers that are tasked with debugging or maintaining
someone else’s code, whether during the initial development or ongoing maintenance phases of a
project, is inconsistent naming conventions. Consistency in naming items in code can go a long way
toward making code more readable and understandable.

The use of the so-called “reverse Hungarian” naming convention is at the discretion of the
programmer.

The following rules govern the conventions for naming various items in Java source code.

4.1.1 Constants

Constants, whether for strings or numerics, should always be in all caps and use underscores to
separate words.

For example:
#define MONTHS_IN_YEAR 12

#define TOKEN_STRING “abc”

in Java:
public static final int MONTHS_IN_YEAR = 12;

public static final String TOKEN_STRING = “abc”;

4.1.2 Global Variables

Global variables should be used sparingly, and only if the architecture specifies it. When global
variables are used, they are named using concatentated words in initial caps.

For example:
int UserId;

in Java:
public Int UserId;

4.1.3 Functions/Methods and their Arguments

Function/method names should be composed of descriptive concatenated words using initial caps,
but should always begin with a lower case letter.

Arguments to functions may be prefixed with “arg”, especially in large functions for greater
visability, but are otherwised derived from descriptive words concatenated together in initial caps.

For example:
void myAction(int argUserChoice, SomeType argTargetObject)

{

} /* end of method myAction() */

Writing Good Software • Development and Coding Standards Page 9 of 12

Functions that compose the exposed public API for a library (whether static or dynamic/shared)
should all share a common lower case prefix to provide consistency in naming and usage as well
as help avoid naming collisions.

4.1.4 Local Variables

Local variables are composed of descriptive words (or initials for convention items) concatenated
with underscores and in all lower case.

For example:
char *login_name; // retrieved from User object

long mean_temperature; // calculated by formula

int rc; // return code

4.1.5 Structures, Types, and Classes

Classes in C++ and Java are functionally very similar to struct, typedef, and union in C. All
of these constructs should use descriptive names (composed of multiple words if necessary). The
“initial caps” convention should be used for all words, including the first word.

Names of Java Interface classes should end with “able”.

Names of abstract classes should end be prefixed with a capital “A”.

For example:
struct CarEngine {

int cylinders;
int max_horse_power;

};

typedef _Car {
char *color;
int doors;
struct CarEngine engine;

} Car;

in Java:

 Class Type Acceptable Unacceptable

 Concrete GoodClassName bad_class_name

 Interface Sortable Isort

 Abstract AHighLevelClass HighLevelClass

4.1.6 Java Packages

All packages produced by Thundernet development teams should begin with com.thundernet.
Packages should be further deliniated with references to the client and project. Package names
should be entirely in lower case letters and should be single words (no hypens or underscores).

The pattern to follow is:

 package com.thundernet.<client>.<project>;

For example:

Writing Good Software • Development and Coding Standards Page 10 of 12

 package com.thundernet.sony.la;

This refers to the package of classes that may be produced on a hypothetical project for the Latin
America division of Sony.

4.2 Comments

4.3 Source File Layout

functions in alphabetical order

4.4 Unit Testing

Writing Good Software • Development and Coding Standards Page 11 of 12

5. SYNTAX STYLE GUIDELINES

5.1 Grammar

5.1.1 Spacing and Indentation

space after language control statements

space after commas

3 blank lines between functions

4 space indentation

5.1.2 Variable Declarations

at the top of methods, not embedded in code blocks

listed in alphabetical order

5.1.3 Braces

K&R brace style

5.1.4 if … else

if (expression) {
statement1;
statement2;

} else if (another_expression) {
statement3;
statement4;

} else {
statement5;
statement6;

}

5.1.5 for

for (i = 0; i < 10; i++) {
statement1;

}

5.1.6 while

while (rc == SUCCESS) {
rc = apiFunction();

}

5.1.7 do … while

do {
rc = apiFunction();

} while (rc != NULL);

Writing Good Software • Development and Coding Standards Page 12 of 12

5.1.8 switch

switch (c) {
case ‘a’:

x = funcA();
break;

case ‘b’:
x = funcB();
break;

default:
x = default_value;

}

5.1.9 try … catch … finally (Java / C++)

try {
exceptionalFunc();
result = doSomething();

} catch (...) {
printf(“exception detected and handled”);

}

	1.	Abstract	3
	Goals
	Scope

	General Rules
	When In Rome …

	Tools and Environments
	Editors
	Tabs
	Spaces on Ends of Lines
	End of File

	IDEs
	Automatic Java Code Generation
	Integrated Editors
	Integrated Repositories
	Limitations in Meeting Java 2 Specs

	Debuggers

	General Coding Rules
	Naming Conventions
	Constants
	Global Variables
	Functions/Methods and their Arguments
	Local Variables
	Structures, Types, and Classes
	Java Packages

	Comments
	Source File Layout
	Unit Testing

	Syntax Style Guidelines
	Grammar
	Spacing and Indentation
	Variable Declarations
	Braces
	if … else
	for
	while
	do … while
	switch
	try … catch … finally (Java / C++)

